GIS and Remote Sensing for Public Health

New possibilities for spatial analysis and modelling of spatial, health-related processes are emerging from the enormous advances in the areas of geographic information science (GIS), global positioning system (GPS), remote sensing and computer-aided cartography, but also in geostatistical processes such as spatial distribution and trend analyses, Multi-level analyses, “spatial data mining” or agent-based modelling. These methods are increasingly being used in epidemiology, public health, and health services research. The rediscovery of the spatial in many sciences has been known for some time as the “spatial turn”, esp. in health science. In the cultural and social sciences, a “spatial turn” is a paradigm shift that also perceives geographical space as a socially and culturally effective variable. This conception of space understands space not only as an empty area, but also as the result of social processes. The “spatial turn” as a paradigm shift is not limited to the fact that the space itself becomes the subject of advanced research methods. Rather, it is about approaching research objects in public health with spatial categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 117.69 Price includes VAT (France)

Softcover Book EUR 158.24 Price includes VAT (France)

Hardcover Book EUR 158.24 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Spatial Epidemiology and Public Health

Chapter © 2022

GIS: A Spatial Turn in the Health Science?

Chapter © 2013

Geographically Precise Public Health: Case of Southern Mozambique

Chapter © 2021

References

  1. Kistemann T, Dangendorf F, Schweikart J (2002) New perspectives on the use of geographical information systems (GIS) in environmental health sciences. Int J Hyg Environ Health 205(3):169–181 ArticleGoogle Scholar
  2. Winslow CEA (1920) The untilled field of public health. Mod Med 2:183–191 Google Scholar
  3. Kappas M (Hrsg.) (2008) Klimawandel und Hautkrebs. Ibidem-Verlag stuttgart Google Scholar
  4. Anselin L (1999) Interactive techniques and exploratory spatial data analysis. In: Longley PA, Goodchild MF, Maguire DJ, Rhind DW (eds) Geographical information systems: Principles, techniques, applications and management. Wiley, New York, pp 253–266 Google Scholar
  5. Armstrong M, Rushton G, Zimmerman D (1999) Geographically masking health data to preserve confidentiality. Stat Med 18:497–525 ArticleGoogle Scholar
  6. Brewer C, Pickle L (2002) Evaluation of methods for classifying epidemiological data on choropleth maps in series. Ann Assoc Am Geogr 92(4):662–681 ArticleGoogle Scholar
  7. Brewer C (2005) Designing better maps: a guide for GIS users. Esri Press, Redlands Google Scholar
  8. Cromley EK, McLafferty SK (2012) GIS and public health, 2nd edn. The Guilford Press Google Scholar
  9. Batbayar G, Pfeiffer M, Kappas M, Karthe D (2018) Development and application of GIS-based assessment of land-use impacts on water quality: a case study of the Kharaa River Basin. Ambio. https://doi.org/10.1007/s13280-018-1123-yArticleGoogle Scholar
  10. Batbayar G, Pfeiffer M, von Tümpling W, Kappas M, Karthe D (2017) chemical water quality gradients in the mongolian sub-catchments of the Selenga River basin. Environ Monit Assess 189:420. https://doi.org/10.1007/s10661-017-6123-z.SpringerInternationalPublishing,PrintISSN0167-6369,OnlineISSN1573-2959ArticleGoogle Scholar
  11. Traoré I, Sié, A, Karthe D, Kappas M, Coulibaly V (2016) Influence of air temperature on children water contacts with respect to schistosomiasis transmission risk in the Sourou Valley, Burkina Faso. J Stochast Environ Res and Risk Assess, 1–11. https://doi.org/10.1007/s00477-016-1214-x
  12. Kappas M, Gross U, Kelleher D (eds) (2012) Global Health. Universitätsverlag Göttingen, A challenge for inter-disciplinary research Google Scholar
  13. Karthe D, Traoré I, Sié A, Kappas M (2012) (2012) Malaria in Kossi Province, Burkina Faso: An inverstigation of spatio-temporal incidence pattern. In: Kappas M, Gross U, Kelleher D (eds) Global Health. Universitätsverlag Göttingen, A challenge for inter-disciplinary research, pp 305–320 Google Scholar
  14. Phan TN, Kappas M, Nguyen KT, Tran TP, Tran QV, Emam AR (2019) Evaluation of MODIS land surface temperature products for daily air surface temperature estimation in northwest Vietnam. Int J Remote Sens. https://doi.org/10.1080/01431161.2019.1580789ArticleGoogle Scholar
  15. Davenhall WF, Kinabrew C (2011) GIS in health and human services. In: Kresse W, Danko D (eds) Springer handbook of geographic information. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72680-7_29
  16. Finke LL (1792) Versuch einer allgemeinen medizinisch-praktischen Geographie, worin der historische Theil der einheimischen Völker- und Staaten-Arzneykunde vorgetragen wird. Weidmannsche Buchhandlung, Leipzig Google Scholar
  17. Koch T (2005) Cartographies of disease: maps, mapping and medicine. redlands. ESRI Google Scholar
  18. Kappas M (2016) Klimawandel und Gesundheit. In: Tamcke M (Hrsg.) Armut und Gesundheit. Göttingen International Health Network. Universitätsverlag Göttingen, S. 95—119. ISBN 978-3-86395-257-0 Google Scholar
  19. Kubanek J, Kappas M, Nolte E-M, Wenzel F, Taubenböck H (2010) Modelling of population dynamics: GIS versus remote sensing—a case study for Istanbul. In: The international emergency management society (TIEMS) 17th Annual conference proceedings. June 8th-11th. 2010. Beijing. China Google Scholar
  20. Kubanek J, Nolte E.-M, Taubenböck H, Wentzel F, Kappas M (2011) Capacities of Remote Sensing for population estimation in urban areas. In: Earthquake hazard impact and urban planning. In: Amas I, Goretti A, Bostenaru, M (eds) Series environmental hazards Edt.: T. Birkland (Springer) Google Scholar
  21. Henning KJ (2004) Overview of syndromic surveillance, What is syndromic surveillance. Morb Mortal Wkly Rep, 53(Suppl.):5–11 Google Scholar
  22. Johnson M, Wilfert RA (2010) Rapid needs assessment and GIS. Focus Field Epidemiol 5(3):1–5 Google Scholar
  23. Wpro WHO (2006) Managing health emergencies: a guide for establishing. Operating and evaluating an emergency operations centre, Manila Google Scholar
  24. Hanjagi A, Srihari P, Rayamane A (2007) A public health care information system using GIS and GPS: A case study of shiggaon. In: Lai PC, Mak ASH (eds) GIS for health and the environment. Lecture notes in geoinformation and cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71318-0_18
  25. Augustin J, Franzke N, Augustin M, Kappas M (2008) Beeinflusst der Klimawandel das Auftreten von haut und Allergiekrankheiten in Deutschland? In: J Deutsche Dermatologische Gesellschaft, JDDG 6:1–8. Englisch online version at www.blackwell-synergy.com/loi/ddg
  26. Colon J, Li J, Elligers A (2011) Environmental public health performance standards (EnvPHPS). NACCHO, Washington Google Scholar
  27. WHO. Environmental health. Geneva: WHO; 2011 Google Scholar
  28. CDC (2010) Exposome and exposomics. Centers for Disease Control and Prevention, Atlanta Google Scholar
  29. Miller G (2020) The exposome. A new paradigm for the environment and health. 2nd edn, Elsevier, ISBN: 9780128140796 Google Scholar
  30. Washino RK, Wood BL (1994) Application of remote sensing to vector arthropod surveillance and control. Am J Trop Med Hyg 50:134–144 ArticleGoogle Scholar
  31. Marzigo HD, Kappas M (2012) Schistosomiasis around the Lake Victoria, Northwest Tanzania. In: Kappas M, Gross U, Kelleher D (eds) Global Health. Universitätsverlag Göttingen, A challenge for interdisciplinary research, pp 283–303 Google Scholar
  32. Palaniyandi M (2012) The role of remote sensing and GIS for spatial prediction of vector-borne diseases transmission: a systematic review. J Vector Borne Dis 49(4):197–204 PMID: 23428518 Google Scholar
  33. Kappas M (2012) Geographische Informationssysteme. Das Geographische Seminar. 2. Auflage, 283 S., Westermann Verlag Google Scholar
  34. Karthe D, Kappas M (2010) Malariaübertragung in Westafrika: Die Rolle natürlicher und anthropogener determinanten. In: Glaser R, Kremb K, Drescher A (Hrsg.). Afrika. Wissenschaftliche Buchgesellschaft. Darmstadt Google Scholar
  35. Karthe D, Kappas M (2007) Modelling malaria transmision in a rural region in West Africa: a case study of Nouna District, Burkina Faso. In: Kappas M, Kleinn C, Sloboda B, (Hrsg.): Göttingen GIS and remote sensing day’s (GGRS 2006): Global change issues in developing and emerging countries, S. 11–16 Google Scholar
  36. Tsantalidou A, Parselia E, Arvanitakis G, Kyratzi K, Gewehr S, Vakali A, Kontoes C MAMOTH (2021) An earth observational data-driven model for mosquitoes abundance prediction. Remote Sens 13(13):2557. https://doi.org/10.3390/rs13132557ArticleGoogle Scholar
  37. Traoré I, Sié A, Coulibaly B, Yé M, Karthe D, Kappas M (2012) Rapid screening and mapping of urinary schistosomiasis prevalence at the vil-lage scale In The sourou valley, burkina faso: adapting the school-base questionnaire method. In: Kappas M, Gross U, Kelleher D (eds) Global Health. Universitätsverlag Göttingen, A challenge for interdisciplinary research, pp 255–281 Google Scholar

Author information

Authors and Affiliations

  1. Head of Cartography, GIS and Remote Sensing Section, Institute of Geography Georg-August University, Goldschmidt Street 5, Göttingen, Germany Martin Kappas
  1. Martin Kappas
You can also search for this author in PubMed Google Scholar

Corresponding author

Editor information

Editors and Affiliations

  1. Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India Pradeep Kumar Garg
  2. School of Engineering and Technology, Asian Institute of Technology, Pathumthani, Thailand Nitin K. Tripathi
  3. Cartography, GIS and Remote Sensing Department, Institute of Geography, Göttingen, Germany Martin Kappas
  4. Amity International Business School, Amity University, Noida, Uttar Pradesh, India Loveleen Gaur

Rights and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kappas, M. (2022). GIS and Remote Sensing for Public Health. In: Garg, P.K., Tripathi, N.K., Kappas, M., Gaur, L. (eds) Geospatial Data Science in Healthcare for Society 5.0. Disruptive Technologies and Digital Transformations for Society 5.0. Springer, Singapore. https://doi.org/10.1007/978-981-16-9476-9_4

Download citation

Share this chapter

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative